kvrkvr_mkrcollege@yahoo.co.in, kvrkvrmkrc@gmail.com
086432 58745
| S.No | Date | Name of the Lecturer Conducted | Class-Group | Sem | Paper/Subject | Name of the Student | Topic | No of Students Completed |
| 1 | 03-01-23 | K. Suresh Kumar | III MCC | V | Multiple Integrals and Applications of Vector Calculus | A. Bhavani | Multiple integral | 33 |
| B.V.Gopi Krishna | Double Integral | |||||||
| CH. Lakshmi Sandhana | Evalation of Double | |||||||
| D. Lokesh Varama | Properties of Double | |||||||
| D. Prasanthi | Volume of Double integral | |||||||
| D. Naga Balaji Reddy | Surface Double Integral | |||||||
| G. Mohamunnisa | Volume as aDouble integral | |||||||
| K. Joel | Vector Differentiation | |||||||
| K. Bhargavi | Differentibility | |||||||
| K. Venkata Lavanya | Gradient | |||||||
| K. Amarnadha Babu | Divergence | |||||||
| K. Hemalatha | Cural Operators | |||||||
| K. Naveen kumar | Formula Involing the Separates | |||||||
| K. Rajak | Line Integrals With Ex | |||||||
| M. Snehitha | Surface Integral with Ex | |||||||
| M. Hariprasad | Volume or Integrals with Ex | |||||||
| M. Prasanth Reddy | Gauss Theorem | |||||||
| M. Karishnma | Greens Theorem | |||||||
| P. David Raju | Stokes Theorem | |||||||
| P. Manikanteswara Raju | Gauss Theorem applications | |||||||
| p. Swathi | Multiple Integral | |||||||
| P. Sasivardhan Reddy | Double integral | |||||||
| P.praveen Kumar | Evaluation of Double | |||||||
| S. Pavani | Properties of Double integrals | |||||||
| S.Mahesh babu | Double integral polar of Co-ordination | |||||||
| Sk. Assef Ahamad | Surface Area by Double | |||||||
| Sk. Nasreen | Volume of Double integral | |||||||
| T. Dugra Bhavani | Vector Differetiation | |||||||
| T.Sireesha | Differentiability | |||||||
| U. Priyanka | Gradient | |||||||
| Y.Divya Naga santhosh | Divergence | |||||||
| Y.Ribca | Curl Operators | |||||||
| Y. Kathyayani | Formula Involing the Separates | |||||||
| 2 | 05-01-23 | K. Suresh Kumar | III MPC | V | Multiple Integrals and Applications of Vector Calculus | A. Gowatham Govardhan reddy | Surface integral | 17 |
| B. N. Pavan kumar Reddy | Volume or Integrals with | |||||||
| B. Pothu Raju | Gauss Theorem | |||||||
| D. Hemanth Srinivasa Reddy | Greens Theorem | |||||||
| D. Swathi | Stockes Theorem | |||||||
| G. Sivanaga Raju | Gauss theoremapplications | |||||||
| K. Jyothirmai | Multiple Integerls | |||||||
| K. Yavakumar | Double integral | |||||||
| M. Manikanta Reddy | Evaluation of Double | |||||||
| K.Deepak | Double integral polar of Co-ordination | |||||||
| P. Uama Sankar reddy | Surface Area by Double | |||||||
| P.Yugandar Naga Raju | Volume as Double Integral | |||||||
| P.P. Venkata Krishna raju | Vector Differentiaton | |||||||
| P.Prasanna kumara | Differetiability | |||||||
| Sk. Janiheera | Gradient | |||||||
| V. Pravallika | Divergence | |||||||
| y. Naga Ramya | Curve Operators | |||||||
| 3 | 06-01-23 | K. Suresh Kumar | III MEC | V | Multiple Integrals and Applications of Vector Calculus | A. Dharani Uma Sravathi | Formula Involing the Spearates | 30 |
| A. Eswar Sai Krishna | Line Integral With Ex | |||||||
| B. Yaswanth | Surface of integrals With Ex | |||||||
| Bajitunnisa | Volume of Integrals With Ex | |||||||
| B. Kesava Sai | Gauss theorem | |||||||
| B. Murali Krishna | Green’s Theorem | |||||||
| B. TejaReddy | Stroke’s Theorem | |||||||
| CH. Rajya Lakshmi | Gauss Theorem | |||||||
| D. Kavya | Multiple Integrals | |||||||
| G. Vijay Kamal | Double Integrals | |||||||
| G. Yesu babu | Evaluation of Double | |||||||
| G. Pujitha | Properties of Double integrals | |||||||
| G. Venkata Pavani | Double integral polar of Co-ordination | |||||||
| J.Sumanth babu | Surface Areaby Double | |||||||
| K.Venkata Ramana | Volume As Double | |||||||
| K. Raja Kumari | Vector Differtiations | |||||||
| K. Suresh Gopi | Differentability | |||||||
| K. Dugra Gayathri | Gradient | |||||||
| K. Pujitha | Divergence | |||||||
| M. Bhargavi | Curl Operators | |||||||
| N.T.V. Satyanarayana | Formula Involving the separates | |||||||
| N.Lavanya | Linear Integral With Ex | |||||||
| P. samyukha | Surface Integral | |||||||
| s. Gouse basha | Volume Integral | |||||||
| Sk. Farajana | Gauss Theorem | |||||||
| Sk. Fathima Sana | Green’s theorem | |||||||
| SK. Sajida | Gauss theorem | |||||||
| Sk. Mohiddin | Stock’s Theorem | |||||||
| T. Mohan Reddy | Volume of Double Integral | |||||||
| Y. Yaswanth Reddy | Volume of Double Integral | |||||||
| 4 | 06-02-23 | K. Suresh Kumar | I MEC&MCC | II | Three Dimensional Analytical Solid Geometry | A. Suhana Sultana | Linear Differential Equation | 21 |
| A. Sivakoti Reddy | Exact Differential Equation | |||||||
| A. Hema Shanmukha | Combined Equations of planes | |||||||
| B. Rabiya Sri | Planes | |||||||
| B. Sirisha | Cones | |||||||
| B. Poojitha | Spheres | |||||||
| Ch. Lakshmi Tirupatamma | Enveloping Cone of Sphere | |||||||
| G. Manasa Harshini | Radical Plane | |||||||
| G. Sunitha | Lines | |||||||
| J. Kiran | Higher Order Linear | |||||||
| K. Sravanthi | Intersection of Two Sphers | |||||||
| O. Sai Divya | Cones | |||||||
| P. Lavanya | Liner Differential | |||||||
| P. Vishnu Teja | Exact Differential Equation | |||||||
| P. Tanuja | Combined Equations of planes | |||||||
| S. Mounika | Planes | |||||||
| S. Nishath | Cones | |||||||
| SK. Raziya Sultana | Spheres | |||||||
| Sk. Rubiya Sajida | Enveloping Cone of Sphere | |||||||
| S. Karishma Sultana | Radical plane | |||||||
| T. Srilekha | Higher order lines | |||||||
| 5 | 08-02-23 | K. Suresh Kumar | I MCC | Three Dimensional Analytical Solid Geometry | K.Gopi Reddy | Reciprocal Cones | 6 | |
| K. Siva Reddy | Right Circular Cone | |||||||
| K. Poojitha | Enveloping Cylinder | |||||||
| N. Hemanth Reddy | Enveloping Cone | |||||||
| P. AdikesavaReddy | Pair of Lines | |||||||
| Sk. Mohammad Fayaz | Right Circular Cone | |||||||
| 6 | 13-02-23 | P. Naga Gowthami | II MPC | III & IV | Abstract Algebra & Real Analysis | A.Madhusudhan Reddy | Ideals | 17 |
| A. ManiKanta Reddy | D-Alembert’s Ratio Test | |||||||
| A.T. Narayana Reddy | Cauchy’s first Theorem on Limits | |||||||
| B. Bhargavi | Monotonic Sequences | |||||||
| B. Dugradevi | Cauchy’s General principle | |||||||
| K.Srija | Cauchy’s nth Root Test | |||||||
| M. Lakshmi | Infinite series | |||||||
| P. Susmika | Limit Point of a sequence | |||||||
| P. Sowamya | Zero Divisors | |||||||
| P. Yamuna | Examples of Lagranges mean value theorem | |||||||
| P. Sai Swaroopa Reddy | Integral Domain | |||||||
| P.Adisesha Reddy | Cauchy’s first Theorem on Limits | |||||||
| Sk. Mothi | D-Alembert’s Ratio Test | |||||||
| Sy.Shaheed | Cauchy’s General principle | |||||||
| T. Nandini | Uniform continuity | |||||||
| Y. HemaSri | Cauchy’s Nth Root Test | |||||||
| Y. Pallavi | Limit Point of a Sequence | |||||||
| 7 | 15-02-23 | P. Naga Gowthami | IIMCC` | III & IV | Abstract Algebra & Real Analysis | D. Siva Manikanta Reddy | Sub Group | 20 |
| C. Nikhil | Sub Groups | |||||||
| D. R. Venkata Anil Reddy | Normal Sub Group | |||||||
| G. Venkateswara Reddy | Normalizer& Centralizer | |||||||
| G. Nandini | Cosets | |||||||
| K. Mahendra Reddy | Field | |||||||
| K. Barath | Cauchy nthroot Test | |||||||
| K. Sivani Sri | D-Alembert’s Ratio Test | |||||||
| K. Sai Venkata Manikanta | Cauchy’s first Theorem on Limits | |||||||
| M. Lasya | Rings | |||||||
| M. Devi Prasanna | Cauchy’s General principle | |||||||
| M. Stuthi | Monotonic Sequences | |||||||
| N. Venkatesh | Charactersic of Field | |||||||
| P. Bindu Madhavi | Fundamental Theorem | |||||||
| Rabbani Baig | P-Series or P-Test | |||||||
| Sk. Haseena | Bolzano-weierstrass Theorem | |||||||
| Sk. Rizawna | Integral Domain | |||||||
| Sk. Shamshuddin | Bounded Sequences | |||||||
| Sk. Shuab Ansar | Bolzano Theorem | |||||||
| Sk.Wajida Tabassum | Boolean Ring | |||||||
| 8 | 16-02-23 | P. Naga Gowthami | IIMEC | III & IV | Abstract Algebra & Real Analysis | B.Shyni | Quotient group | 20 |
| D. Jyothi Phani Sree | Cauchy’s general theorem | |||||||
| D. Bhagya Lakshmi | Integral Group | |||||||
| D.Maneela | Abelian Group | |||||||
| D. Chandara Sri | Disjoint Cycle | |||||||
| G. Sravani | Commutative Group | |||||||
| K. HemaSri | Cyclic Group | |||||||
| K. Ravi Sankar | Ideals | |||||||
| L. Ratna Babu | Sub Group | |||||||
| M. Gopi Sai Ram | Bolzano’s Theorem | |||||||
| M. Naveena | Rings | |||||||
| M. Nandini | Zero divisors | |||||||
| M. Mohana valli | D-Almbert’s Ratio Test | |||||||
| P. Brahma Reddy |
Differentiation |
|||||||
| Sk. Nazlin Sulthana | Disjoint Cycles | |||||||
| Sk. Shameena | Integrable | |||||||
| Sk.Mohammad Farooq | P-Series | |||||||
| Sy. Nasreen | Sequence | |||||||
| Sy. Sajida | Cachy’s Mean Value | |||||||
| T. Swathi | Integrable | |||||||
| 9 | 09-3-23 | P. Naga Gowthami | III MPC | V | Integral Transform with Applications | B. Pothu Raju | Linear Propetry | 15 |
| D. Swathi | Initial value theorem | |||||||
| G. Siva Naga Raju | Final value Theorem | |||||||
| K.Jyothirmai | Second Shifting Theorem | |||||||
| K.Yuva Kumar | Change of Scale Proper | |||||||
| M. Manikanta | Error Function | |||||||
| M. Deepak | Initial value theorem | |||||||
| P. Uma Sankar Reddy | Convolution Theorem | |||||||
| P. Prassna Kumari | Fourier Cosine Transform | |||||||
| P. Yugandhar Nagaraju | Parseval’s indentityTheoem | |||||||
| Sk. Janiheera | Linear property | |||||||
| V. Pravallika | Error Funcation | |||||||
| Y. Naga Ramya | Inverse laplace Transform | |||||||
| Naga Pavan Kumar Reddy | Fourier Cosine Transform | |||||||
| Hemanth Srinvas Reddy | Second Shifting Theorrm | |||||||
| 10 | 13-03-23 | P. Naga Gowthami | III MCC | V | Integral Transform with Applications | A. Bhavani | Laplace Transform | 20 |
| C. Lakshmi Sadhana | Initial Value Theorem | |||||||
| D. Lokesh Varma | Parseval’s Identity Theorem | |||||||
| D. Prasanthi | Change of Scale Property | |||||||
| D. Naga Balaji Reddy | Fourier sine Transform | |||||||
| G. Mohamunnisa | Error Funcation | |||||||
| K.Joel | Convolution Theorem | |||||||
| K.Bhargavi | First shifting Theorem | |||||||
| K.Amarnadh Babu | Division by Power of P | |||||||
| K. Hemalatha | Multiplication by power of P | |||||||
| K.Naveen Kumar | Transform of an Integral | |||||||
| K. Rajak | Linear property | |||||||
| M. Hari Prasad | Intitial Value Theorem | |||||||
| M.Prasanth Reddy | Intitial Value Theorem | |||||||
| M. Kraishma | Change of Scale Property | |||||||
| P. David Raju | Fourier Cosine Transform | |||||||
| S. Pavani | Transform of an Integral | |||||||
| T. Durga Bhavani | Initial Value Theorem | |||||||
| V. Priyanka | Conevert Integral into Differential Equation | |||||||
| Y. Kathyayani | Initial Value Theorem | |||||||
| 11 | 14-03-23 | P. Naga Gowthami | III MEC | V | Integral Transform with Applications | B. Yaswanth | Multiplication by Power of P | 20 |
| B. Kesava Sai | First Shifting Theorem | |||||||
| B. Murali Krishna | Final Value Theorem | |||||||
| B. Teja Reddy | Error Function | |||||||
| C. Rajya Lakshmi | Parseval’s Identity for I.F | |||||||
| D. Kavya | Laplace Transform | |||||||
| G. Vijay Kamal | Change of Scale property | |||||||
| G. Yesu babu | Convolution Theorem | |||||||
| G. Pujitha | Inverse Laplace Transform | |||||||
| G. Venkata Pavani | Converting I.E into D.E | |||||||
| J.Sumanth babu | Error Function | |||||||
| K.Venkata Ramana | Change of Scale property | |||||||
| K. Suresh Gopi | Linear Property | |||||||
| N. Lavanya | Convolution Theorem | |||||||
| SD. Gouse Basha | Initial Value Theorem | |||||||
| SK. Farjana | Initial Value Theorem | |||||||
| SK. Sajida | Division by Power of P | |||||||
| SD. Mohiddin | Inverse Laplace Transform | |||||||
| SK. Fathima Sana | Inverse Laplace Transform |